
Chapter	3:	Basics	of	CSS

Now	that	we’ve	covered	quite	a	bit	of	HTML,	let’s	move	on	to	CSS.	CSS	stands
for	Cascading	Stylesheet	and	as	the	name	suggests,	CSS	is	all	about	styling	and
making	your	website	look	gorgeous.

The	latest	version	of	CSS	is	CSS3.	Unlike	previous	versions	of	CSS	(namely
CSS1	and	CSS2.1),	CSS3	splits	the	language	into	different	modules	so	that	each
module	can	be	developed	separately	at	a	different	pace.	Each	module	adds	new
features	or	extends	the	capabilities	of	features	previously	defined	in	CSS	2.1.
Essentially,	CSS3	is	simply	an	extension	of	CSS2.1.

This	book	covers	the	core	properties	of	CSS2.1	as	well	as	a	few	new	properties
that	are	introduced	in	CSS3.	Once	you	master	the	core	properties,	you	will	have
no	problems	moving	on	to	more	advanced	properties	that	are	newly	added	in
CSS3.	These	advanced	properties	allow	for	more	fanciful	styling	of	your
website,	such	as	adding	transitions	and	animations.

In	this	chapter,	we’ll	be	covering	the	basics	of	CSS,	including	its	syntax	and
order	of	precedence.	However,	before	going	into	the	syntax	of	CSS,	let’s	first
learn	how	to	add	CSS	rules	to	our	web	site.

Applying	CSS	Code

There	are	three	ways	to	apply	CSS	code	to	our	site.

The	first	is	by	linking	to	an	external	file.	This	is	the	recommended	method.	To
do	linking,	you	need	to	write	your	CSS	rules	in	a	separate	text	file	and	save	it
with	a	.css	extension.	The	syntax	for	adding	the	rules	to	your	HTML	code	is

<link	rel="stylesheet"	type="text/css"	href="style.css">

	

You	add	the	<link>	tag	to	the	head	element,	between	the	<head>...</head>
tags.	The	first	two	attributes	rel	and	type	tell	the	browser	that	this	is	a	CSS
stylesheet.	You	do	not	need	to	modify	them.	The	last	attribute	href	is	where	you
specify	the	path	to	the	CSS	file	that	you	want	to	link	to.	A	CSS	file	is	simply	a

file	that	contains	CSS	rules,	without	any	HTML	tags.	An	example	is	shown
below.	Don’t	worry	if	the	code	does	not	make	sense	to	you,	we’ll	cover	them
very	soon.

body	{

							margin:	0;

							background-color:	green;

}

Save	this	code	as	“style.css”	in	the	same	folder	as	the	.html	file.	You	can	then
use	the	<link>	tag	above	to	link	this	CSS	file	to	your	HTML	file.

The	second	method	to	add	CSS	rules	to	our	site	is	to	embed	the	code	directly
into	our	HTML	source	code,	within	the	head	element.	This	is	done	with	the
<style>	tag.	An	example	is	shown	below.	The	embedded	CSS	code	starts	after
the	<style>	start	tag	and	ends	before	the	</style>	end	tag.

<head>

<style>

div	{

														color:	blue;

														width:	100px;

														height:	200px;

}

</style>

</head>

The	last	method	is	to	use	inline	CSS.	Inline	CSS	is	specified	in	the	start	tag	of
the	element	you	want	to	apply	it	to,	using	the	style	attribute.	Each	rule	ends
with	a	semi-colon	(;).	An	example	is:

<div	style="text-decoration:underline;	color:blue;">Some	text</div>

Out	of	the	three	methods,	linking	is	the	preferred	method.	Linking	separates	the
HTML	content	from	the	styling	rules	and	makes	it	easier	to	maintain	our	codes.
It	is	also	extremely	useful	when	we	need	to	apply	the	same	CSS	rules	to	multiple
web	pages.

Embedded	CSS,	on	the	other	hand,		is	commonly	used	when	the	rules	only	apply
to	one	web	page.

Inline	CSS	is	handy	when	you	need	to	apply	a	rule	to	only	one	element,	or	when

you	want	to	override	other	CSS	rules	that	apply	to	the	same	element.	This	is
because	inline	CSS	has	a	higher	precedence	than	CSS	code	added	using	the
other	two	methods.	We’ll	discuss	order	of	precedence	later	in	this	chapter.
However,	inline	CSS	mixes	styling	with	content	and	should	be	avoided
whenever	possible.

Syntax	of	a	CSS	rule

Now	that	we	know	how	to	apply	CSS	rules	to	our	HTML	files,	let’s	move	on	to
learn	some	actual	CSS	code.	The	first	thing	to	learn	about	CSS	is	its	syntax,
which	is	relatively	straightforward.	The	syntax	is:

selector	{	property	:	value;	property	:	value;	property	:	value;	}

	

For	instance,	if	you	want	to	style	the	contents	inside	a	<div>	tag,	you	write	the
rule	as

div	{

		background-color:	green;

		font-size:	12px;		

}

	

The	first	word	div	is	the	selector.	It	tells	the	browser	that	the	set	of	rules	inside
the	curly	brackets	{	}	applies	to	all	elements	with	the	<div>	tag.

Inside	the	curly	brackets,	you	write	all	your	declarations.	You	start	by	declaring
the	property	that	you	want	to	set	(background-color	in	the	first	declaration),
followed	by	a	colon	(:).	Next,	you	give	the	value	that	you	want	(green	in	this
case).	Finally,	you	end	each	declaration	with	a	semi-colon	(;).

Indentation	and	line	breaks	do	not	matter	in	CSS.	You	can	also	write	your
declarations	like	this:

div	{	background-color:	green;	font-size:	12px;	}

Pretty	straightforward	right?	Great!	Let’s	move	on...

Selecting	an	Element

In	the	example	above,	the	rules	declared	in	the	curly	brackets	will	apply	to	ALL
elements	with	a	<div>	tag.	However,	most	of	the	time,	we	want	greater	variation.
Suppose	you	want	one	<div>	element	to	have	a	font	size	of	12px	and	another	to
have	a	font	size	of	14px.	How	would	you	do	it?

Selecting	Classes	and	IDs

There	are	basically	two	ways	to	do	it.	The	first	method	is	to	use	the	id	attribute.
In	your	HTML	document,	instead	of	just	using	the	<div>	tag,	you	can	add	an	id
attribute	to	it.	For	instance,	you	can	write

<div	id=”para1”>

Some	text.

</div>

	

<div	id=”para2”>

More	text.

</div>

	

In	our	CSS	code,	we	can	then	select	the	respective	id	by	adding	a	#	sign	in	front
of	the	id	name.	An	example	is	shown	below:

div	{

		background-color:	green;

}

	

#para1

{

		font-size:	12px;

}

	

#para2

{

		font-size:	14px;

}

	

The	first	rule	applies	to	all	elements	with	the	<div>	tag.	The	second	rule	only
applies	to	the	element	with	id=”para1”.	The	third	rule	only	applies	to	the
element	with	id=”para2”.

In	addition	to	using	the	selector	#para1,	you	can	also	be	more	specific	and	write
div#para1,	with	no	space	before	and	after	the	#	sign.	Both	methods	will	select
the	same	element,	but	the	second	method	has	a	higher	precedence	(more	on	this

later).

Note	that	an	id	should	be	unique	within	a	page.	Two	<div	id=”para1”>	tags	is
not	allowed.	One	<div	id=”para1”>	and	one	<p	id=”para1”>	tag	is	also	not
allowed	as	both	have	the	same	id.	Although	your	HTML	and	CSS	code	will
work	even	if	you	have	two	elements	with	the	same	id,	problems	will	arise	when
you	start	using	Javascript	or	other	scripting	languages	on	your	website.

If	you	need	to	apply	the	same	CSS	rules	to	two	different	elements,	you	can	use	a
class.	A	class	is	similar	to	an	id,	with	the	exception	that	a	class	need	not	be
unique.	In	addition,	an	id	has	a	higher	precedence	than	a	class.

For	now,	let’s	consider	the	following	code:

<div	class=”myclass1”>

Some	text.

</div>

	

<p	class=”myclass1”>

More	text.

</p>

	

<div>

Yet	more	text.

</div>

If	you	want	to	select	all	<div>	elements	(i.e.	the	first	and	third	element),	you
write

div	{	…	}

If	you	want	to	select	all	elements	with	class=”myclass1”	(i.e.	the	first	and
second	element),	you	add	a	dot	(.)	in	front	of	the	class	name,	like	this:

.myclass1	{	…	}

If	you	only	want	to	select	<p>	tags	with	class=”myclass1”	(i.e.	the	second
element),	you	write

p.myclass	{	…	}

There	should	be	no	space	before	and	after	the	dot.

An	element	can	have	more	than	one	classes.	Multiple	classes	are	separated	with
a	space	in	the	HTML	attribute.	For	instance,	the	div	below	has	two	classes:
myclass1	and	myclass2.

<div	class=”myclass1	myclass2”>

…

</div>

	
If	we	have	the	following	CSS	code,

.myclass1	{	…	}

	

.myclass2	{	…	}

the	rules	for	both	myclass1	and	myclass2	will	apply	to	the	above	<div>.

More	Selectors

In	addition	to	selecting	an	element	by	id	and	class,	CSS	offers	a	large	variety	of
ways	to	specify	the	elements	that	we	want	to	select.

Selecting	Multiple	Elements

For	instance,	we	can	select	multiple	elements	at	one	go.	If	we	want	to	select	the
<div>,	<p>	and		elements,	we	write:

div,	p,	ul	{	…	}

Selecting	Child	Elements

If	we	want	to	select	all	the	<p>	elements	inside	<div>	elements,	we	write

div	p	{	…	}

	

Note	that	there	is	no	comma	between	div	and	p.	In	this	case,	the	CSS	rules	will
only	apply	to	<p>	elements	that	are	inside	<div>	elements.	For	instance,	if	we
have	the	HTML	structure	below,	the	rules	will	apply	to	‘I	am	a	paragraph
inside	div’	and	not	to	‘I	am	a	stand-alone	paragraph’.

<div>

							<p>I	am	a	paragraph	inside	div</p>

</div>

	

<p>I	am	a	stand-alone	paragraph</p>

The	first	paragraph	‘I	am	a	paragraph	inside	div’	is	called	a	child	element
of	the	<div>	tag	as	its	start	and	end	tags	(<p>	and	</p>)	lie	entirely	within	the
<div>...</div>	tags.

Selecting	by	Attribute

You	can	also	select	an	element	based	on	its	attribute.	If	you	want	to	select	all
hyperlinks	that	link	to	http://www.learncodingfast.com,	you	write

a[href=”http://www.learncodingfast.com”]		{	…	}

There	should	be	no	space	before	the	square	bracket.	If	you	have	the	following
HTML	code,	only	the	first	link	will	be	selected.

Learn	Coding	Fast

Google

Selecting	Pseudo-classes

Another	commonly	used	selector	is	the	pseudo-class	selector.	A	pseudo-class
refers	to	a	special	state	of	an	element.	The	most	common	pseudo-classes	are
those	for	the	<a>...	element.	A	hyperlink	can	be	in	one	of	four	states:

link	(an	unvisited	link)
visited	(a	visited	link)
hover	(when	the	user	mouses	over	it),	or
active	(when	the	link	is	clicked).	

We	can	select	a	hyperlink	based	on	the	state	it	is	in.	For	instance,	to	select	the
hover	state,	we	write

a:hover	{	…	}

The	keyword	hover	is	added	to	the	back	of	the	a	selector	using	a	colon	(:),	with
no	spaces	before	and	after	the	colon.	We’ll	come	back	to	the	concept	of	selecting

http://www.learncodingfast.com/
http://www.learncodingfast.com/
http://www.learncodingfast.com/
http://www.learncodingfast.com/

and	styling	different	states	of	a	hyperlink	in	Chapter	9.

In	addition	to	selecting	different	states	of	a	hyperlink,	we	can	also	use	pseudo-
classes	is	to	select	child	elements.	Suppose	we	have	a	<div>	element	with	three
<p>	child	elements:

<div>

							<p>I	am	the	first	child</p>

							<p>I	am	the	second	child</p>

							<p>I	am	the	third	child</p>

</div>

We	can	use	the	first-child	pseudo-class	to	select	the	first	<p>	element.	We	can
also	use	the	last-child	selector	to	select	the	last	child	or	the	nth-child(n)
selector	to	select	the	nth	child.

For	instance,	if	we	write

p:nth-child(2)	{	…	}

we’ll	be	selecting	the	paragraph	‘I	am	the	second	child’	because	of	the
number	‘2’	in	the	parenthesis	().

Selecting	Pseudo-elements

In	addition	to	pseudo-classes,	CSS	also	has	the	concept	of	pseudo-elements.	A
pseudo-element	refers	to	a	specified	part	of	an	element,	such	as	the	first	letter	or
the	first	line	of	an	element.

For	instance,	if	we	have	the	following	<p>	element:

<p>This	is	some	text.</p>

We	can	select	the	first	letter	(T)	by	writing

p::first-letter	{	…	}

Note	that	a	double	colon	is	used	in	this	case.	Another	pseudo-element	is	the
first-line	element.	This	will	select	the	first	line	of	the	text.	

Finally,	we	can	use	the	before	and	after	pseudo-elements	to	insert	content
before,	or	after,	the	content	of	an	element.	For	instance,	if	we	want	to	add	an
exclamation	mark	after	all	H1	elements,	we	can	write

h1::after	{

content:	“!”;

}

This	will	automatically	append	an	exclamation	mark	after	all	H1	elements.	If	we
have	the	following	HTML	code

<h1>This	is	a	heading</h1>

we’ll	get

This	is	a	heading!

Case	Insensitivity

For	the	most	part,	CSS	selectors	and	rules	are	case-insensitive.	Hence,	you	can
either	write

div	{

							Background-color:	GREEN;

}

or

DIV	{

	

							background-coloR:	green;

}

Both	will	work	equally	well.	The	only	exception	to	this	case-insensitivity	is
when	selecting	classes	and	ids.

If	we	have

<div	id=	“myID”>Some	text</div>

div#myID	will	select	the	above	element	while	div#MYID	will	not.

Order	of	Precedence

Now	that	we’ve	learnt	how	to	select	elements,	let	us	move	on	to	a	very	important
concept	in	CSS:	order	of	precedence.

As	mentioned	earlier,	we	can	apply	CSS	code	to	our	website	in	three	different
ways.	It	is	common	for	a	programmer	to	use	more	than	one	way	to	apply	CSS
code	to	a	site.	For	instance,	a	website	may	have	CSS	rules	defined	in	an	external
file	AND	some	additional	CSS	rules	embedded	within	its	<style>...</style>
tags.	This	may	result	in	more	than	one	rule	being	applied	to	the	same	element.
One	of	the	most	frustrating	experience	about	working	with	CSS,	especially	when
you	are	first	starting	out,	is	when	you	try	to	apply	a	css	style	to	an	element	and
the	page	simply	seems	to	ignore	your	rule.	Most	of	the	time,	this	is	due	to	the
order	of	precedence.	Specifically,	this	happens	when	more	than	one	rule	applies
to	the	same	element,	and	another	rule	has	a	higher	precedence	than	the	one	you
are	specifying.

Three	principles	control	which	CSS	rule	has	a	higher	precedence.

Principle	1:	The	more	specific	the	selector,	the	higher	the	precedence

We	won’t	go	into	details	about	how	to	calculate	the	specificity	of	a	selector.	The
main	point	to	remember	is	that	an	id	is	considered	to	be	more	specific	than	a
class,	and	a	class	more	specific	than	an	element.	Let’s	consider	the	code
below:

div	{	font-size:	10px;	}

#myId	{	font-size:	12px;	}

.myClass	{	font-size:	14px;	}

	

<div	id=”myId”	class=”myClass”>Some	text</div>

Since	the	<div>	element	has	class=”myClass”	and	id=”myId”,	all	three	rules
div,	#myId	and	.myClass	will	apply	to	the	<div>	element.	However,	as	id	has
the	highest	precedence,	“Some	text”	will	be	displayed	with	a	font	size	of	12px.

In	addition,	another	point	to	note	about	specificity	is	that	the	more	detailed	your
selector,	the	higher	the	precedence.	For	instance,	div#myId	has	a	higher

precedence	than	#myId.	This	is	because	div#myId	is	considered	to	be	more
detailed	as	it	tells	us	that	myId	is	an	id	of	the	div	element.	In	the	sample	code
below,	the	color	yellow	will	be	applied.

div	{	color:	red;	}

div#myId	{	color:	yellow;	}

#myId	{	color:	blue;	}

.myClass	{	color:	green;	}

	

<div	id=”myId”	class=”myClass”>Some	text</div>

Principle	2:	If	no	style	is	specified,	elements	inherit	styles	from	their	parent
container

A	child	element	is	an	element	which	lies	entirely	within	the	start	and	end	tags	of
another	element.	For	instance,	in	the	code	below,	<p>	is	a	child	element	of	the
<body>	element.	Since	the	font	size	of	<p>	is	not	defined,	it’ll	inherit	this
property	from	the	<body>	element	for	which	the	property	is	defined.
	

body	{

							font-size:	1.5em;

}

	

<body>

							<p>Some	text</p>

</body>

	

If	the	font-size	property	is	also	not	defined	for	the	<body>	element,	the
browser’s	default	font	size	will	be	used.

Principle	3:	All	else	being	equal,	the	last	declared	rule	wins

Suppose	you	have	the	following	CSS	declaration	in	your	HTML	<head>
element.

<head>

<style>

							p	{	font-size:	20px;	}

</style>

</head>

Further	down	the	HTML	document,	you	have	the	following	HTML	code,	with
an	inline	CSS	rule:

<p	style=”font-size:	30px;”>Some	text</p>

Which	rule	do	you	think	will	be	applied	to	the	words	“Some	text”?

The	correct	answer	is	the	inline	rule.	This	is	because	all	things	being	equal,	the
rule	that	is	declared	last	has	the	highest	precedence.	Since	inline	CSS	is	declared
within	the	HTML	code,	it	is	declared	later	than	the	embedded	CSS	which	is
declared	in	the	head	section.	Hence,	a	font	size	of	30px	will	be	applied.

Display	Inconsistency

Another	issue	to	deal	with	when	working	with	CSS	is	the	problem	of	display
inconsistency	across	browsers.	You	may	find	that	your	website	looks	slightly	(or
drastically)	different	in	different	browsers.	Most	display	issues	tend	to	occur	in
older	versions	of	Internet	Explorer,	although	issues	can	occur	in	other	browsers
too	(especially	mobile	browsers).

Display	inconsistencies	occur	because	different	browsers	use	different	layout
engines	to	interpret	the	site’s	CSS	code.	For	instance,	Safari	and	Chrome	use	the
WebKit	engine	while	Firefox	uses	the	Gecko	engine.	One	engine	may	calculate
and	display	a	page	differently	from	another	engine.	For	instance	Trident,	the
engine	used	by	Internet	Explorer,	automatically	widens	a	page’s	pixel	width	for
certain	page	designs.	This	can	lead	to	the	sidebar	being	pushed	to	the	bottom	due
to	insufficient	width.

Another	problem	causing	display	inconsistency	is	the	lack	of	universal	support
for	some	CSS	properties.	Some	properties	are	not	supported	by	all	browsers.	You
can	go	to	the	site	http://www.caniuse.com	to	check	if	a	certain	CSS	property	is
supported	by	the	browser	that	you	are	developing	for.	

Sometimes,	a	certain	CSS	property	is	supported	by	a	particular	browser	only
when	we	add	a	prefix	to	our	CSS	rules.	This	is	especially	true	for	newer
properties	in	CSS3.	An	example	is	the	column-count	property	in	CSS3.	This
property	divides	an	element	into	multiple	columns.	For	instance,	we	can	divide	a
div	element	into	three	columns	by	writing	column-count:	3.

This	property	is	not	supported	by	older	versions	of	Firefox,	Chrome,	Safari	and

http://www.caniuse.com/

Opera.	To	enable	the	property	to	work	on	these	browsers,	you	have	to	write	it	as
three	declarations,

-webkit-column-count:	3;

-moz-column-count:	3;

column-count:	3;

instead	of	just

column-count:	3;

The	-webkit-	prefix	adds	support	for	older	versions	of	Chrome,	Safari	and
Opera	while	the	-moz-	prefix	adds	support	for	Firefox.	In	addition,	we	also	have
the	-ms-	prefix	that	adds	support	for	Internet	Explorer.

When	creating	your	website,	it	is	useful	to	test	it	on	various	browsers	to	ensure
that	nothing	is	broken.	The	way	to	fix	a	‘broken’	display	depends	on	the	issue
causing	it.	If	you	are	really	stuck,	I	suggest	searching	or	posting	the	question	on
http://stackoverflow.com,	which	is	a	very	useful	online	community	for
programmers.

Comments

The	last	thing	to	cover	in	this	chapter	is	comments.	In	CSS,	we	add	comments	to
our	code	using	the	/*...*/	symbols.	An	example	is	as	follows:

/*

The	rules	below	are	comments.

	

p	{

							background-color:	black;

							font-size:	20px;

							color:	white;

}

*/

	

Everything	between	the	/*	and	*/	symbols	is	ignored	by	the	browser.

Exercise	3

http://stackoverflow.com/

